LogoLogo
Release notesAPI docsDocs homeStructural CloudTonic.ai
  • Tonic Structural User Guide
  • About Tonic Structural
    • Structural data generation workflow
    • Structural deployment types
    • Structural implementation roles
    • Structural license plans
  • Logging into Structural for the first time
  • Getting started with the Structural free trial
  • Managing your user account
  • Frequently Asked Questions
  • Tutorial videos
  • Creating and managing workspaces
    • Managing workspaces
      • Viewing your list of workspaces
      • Creating, editing, or deleting a workspace
      • Workspace configuration settings
        • Workspace identification and connection type
        • Data connection settings
        • Configuring secrets managers for database connections
        • Data generation settings
        • Enabling and configuring upsert
        • Writing output to Tonic Ephemeral
        • Writing output to a container repository
        • Advanced workspace overrides
      • About the workspace management view
      • About workspace inheritance
      • Assigning tags to a workspace
      • Exporting and importing the workspace configuration
    • Managing access to workspaces
      • Sharing workspace access
      • Transferring ownership of a workspace
    • Viewing workspace jobs and job details
  • Configuring data generation
    • Privacy Hub
    • Database View
      • Viewing and configuring tables
      • Viewing the column list
      • Displaying sample data for a column
      • Configuring an individual column
      • Configuring multiple columns
      • Identifying similar columns
      • Commenting on columns
    • Table View
    • Working with document-based data
      • Performing scans on collections
      • Using Collection View
    • Identifying sensitive data
      • Running the Structural sensitivity scan
      • Manually indicating whether a column is sensitive
      • Built-in sensitivity types that Structural detects
      • Creating and managing custom sensitivity rules
    • Table modes
    • Generator information
      • Generator summary
      • Generator reference
        • Address
        • Algebraic
        • Alphanumeric String Key
        • Array Character Scramble
        • Array JSON Mask
        • Array Regex Mask
        • ASCII Key
        • Business Name
        • Categorical
        • Character Scramble
        • Character Substitution
        • Company Name
        • Conditional
        • Constant
        • Continuous
        • Cross Table Sum
        • CSV Mask
        • Custom Categorical
        • Date Truncation
        • Email
        • Event Timestamps
        • File Name
        • Find and Replace
        • FNR
        • Geo
        • HIPAA Address
        • Hostname
        • HStore Mask
        • HTML Mask
        • Integer Key
        • International Address
        • IP Address
        • JSON Mask
        • MAC Address
        • Mongo ObjectId Key
        • Name
        • Noise Generator
        • Null
        • Numeric String Key
        • Passthrough
        • Phone
        • Random Boolean
        • Random Double
        • Random Hash
        • Random Integer
        • Random Timestamp
        • Random UUID
        • Regex Mask
        • Sequential Integer
        • Shipping Container
        • SIN
        • SSN
        • Struct Mask
        • Timestamp Shift Generator
        • Unique Email
        • URL
        • UUID Key
        • XML Mask
      • Generator characteristics
        • Enabling consistency
        • Linking generators
        • Differential privacy
        • Partitioning a column
        • Data-free generators
        • Supporting uniqueness constraints
        • Format-preserving encryption (FPE)
      • Generator types
        • Composite generators
        • Primary key generators
    • Generator assignment and configuration
      • Reviewing and applying recommended generators
      • Assigning and configuring generators
      • Document View for file connector JSON columns
      • Generator hints and tips
      • Managing generator presets
      • Configuring and using Structural data encryption
      • Custom value processors
    • Subsetting data
      • About subsetting
      • Using table filtering for data warehouses and Spark-based data connectors
      • Viewing the current subsetting configuration
      • Subsetting and foreign keys
      • Configuring subsetting
      • Viewing and managing configuration inheritance
      • Viewing the subset creation steps
      • Viewing previous subsetting data generation runs
      • Generating cohesive subset data from related databases
      • Other subsetting hints and tips
    • Viewing and adding foreign keys
    • Viewing and resolving schema changes
    • Tracking changes to workspaces, generator presets, and sensitivity rules
    • Using the Privacy Report to verify data protection
  • Running data generation
    • Running data generation jobs
      • Types of data generation
      • Data generation process
      • Running data generation manually
      • Scheduling data generation
      • Issues that prevent data generation
    • Managing data generation performance
    • Viewing and downloading container artifacts
    • Post-job scripts
    • Webhooks
  • Installing and Administering Structural
    • Structural architecture
    • Using Structural securely
    • Deploying a self-hosted Structural instance
      • Deployment checklist
      • System requirements
      • Deploying with Docker Compose
      • Deploying on Kubernetes with Helm
      • Enabling the option to write output data to a container repository
        • Setting up a Kubernetes cluster to use to write output data to a container repository
        • Required access to write destination data to a container repository
      • Entering and updating your license key
      • Setting up host integration
      • Working with the application database
      • Setting up a secret
      • Setting a custom certificate
    • Using Structural Cloud
      • Structural Cloud notes
      • Setting up and managing a Structural Cloud pay-as-you-go subscription
      • Structural Cloud onboarding
    • Managing user access to Structural
      • Structural organizations
      • Determining whether users can create accounts
      • Creating a new account in an existing organization
      • Single sign-on (SSO)
        • Structural user authentication with SSO
        • Enabling and configuring SSO on Structural Cloud
        • Synchronizing SSO groups with Structural
        • Viewing the list of SSO groups in Tonic Structural
        • AWS IAM Identity Center
        • Duo
        • GitHub
        • Google
        • Keycloak
        • Microsoft Entra ID (previously Azure Active Directory)
        • Okta
        • OpenID Connect (OIDC)
        • SAML
      • Managing Structural users
      • Managing permissions
        • About permission sets
        • Built-in permission sets
        • Available permissions
        • Viewing the lists of global and workspace permission sets
        • Configuring custom permission sets
        • Selecting default permission sets
        • Configuring access to global permission sets
        • Setting initial access to all global permissions
        • Granting Account Admin access for a Structural Cloud organization
    • Structural monitoring and logging
      • Monitoring Structural services
      • Performing health checks
      • Downloading the usage report
      • Tracking user access and permissions
      • Redacted and diagnostic (unredacted) logs
      • Data that Tonic.ai collects
      • Verifying and enabling telemetry sharing
    • Configuring environment settings
    • Updating Structural
  • Connecting to your data
    • About data connectors
    • Overview for database administrators
    • Data connector summary
    • Amazon DynamoDB
      • System requirements and limitations for DynamoDB
      • Structural differences and limitations with DynamoDB
      • Before you create a DynamoDB workspace
      • Configuring DynamoDB workspace data connections
    • Amazon EMR
      • Structural process overview for Amazon EMR
      • System requirements for Amazon EMR
      • Structural differences and limitations with Amazon EMR
      • Before you create an Amazon EMR workspace
        • Creating IAM roles for Structural and Amazon EMR
        • Creating Athena workgroups
        • Configuration for cross-account setups
      • Configuring Amazon EMR workspace data connections
    • Amazon Redshift
      • Structural process overview for Amazon Redshift
      • Structural differences and limitations with Amazon Redshift
      • Before you create an Amazon Redshift workspace
        • Required AWS instance profile permissions for Amazon Redshift
        • Setting up the AWS Lambda role for Amazon Redshift
        • AWS KMS permissions for Amazon SQS message encryption
        • Amazon Redshift-specific Structural environment settings
        • Source and destination database permissions for Amazon Redshift
      • Configuring Amazon Redshift workspace data connections
    • Databricks
      • Structural process overview for Databricks
      • System requirements for Databricks
      • Structural differences and limitations with Databricks
      • Before you create a Databricks workspace
        • Granting access to storage
        • Setting up your Databricks cluster
        • Configuring the destination database schema creation
      • Configuring Databricks workspace data connections
    • Db2 for LUW
      • System requirements for Db2 for LUW
      • Structural differences and limitations with Db2 for LUW
      • Before you create a Db2 for LUW workspace
      • Configuring Db2 for LUW workspace data connections
    • File connector
      • Overview of the file connector process
      • Supported file and content types
      • Structural differences and limitations with the file connector
      • Before you create a file connector workspace
      • Configuring the file connector storage type and output options
      • Managing file groups in a file connector workspace
      • Downloading generated file connector files
    • Google BigQuery
      • Structural differences and limitations with Google BigQuery
      • Before you create a Google BigQuery workspace
      • Configuring Google BigQuery workspace data connections
      • Resolving schema changes for de-identified views
    • MongoDB
      • System requirements for MongoDB
      • Structural differences and limitations with MongoDB
      • Configuring MongoDB workspace data connections
      • Other MongoDB hints and tips
    • MySQL
      • System requirements for MySQL
      • Before you create a MySQL workspace
      • Configuring MySQL workspace data connections
    • Oracle
      • Known limitations for Oracle schema objects
      • System requirements for Oracle
      • Structural differences and limitations with Oracle
      • Before you create an Oracle workspace
      • Configuring Oracle workspace data connections
    • PostgreSQL
      • System requirements for PostgreSQL
      • Before you create a PostgreSQL workspace
      • Configuring PostgreSQL workspace data connections
    • Salesforce
      • System requirements for Salesforce
      • Structural differences and limitations with Salesforce
      • Before you create a Salesforce workspace
      • Configuring Salesforce workspace data connections
    • Snowflake on AWS
      • Structural process overviews for Snowflake on AWS
      • Structural differences and limitations with Snowflake on AWS
      • Before you create a Snowflake on AWS workspace
        • Required AWS instance profile permissions for Snowflake on AWS
        • Other configuration for Lambda processing
        • Source and destination database permissions for Snowflake on AWS
        • Configuring whether Structural creates the Snowflake on AWS destination database schema
      • Configuring Snowflake on AWS workspace data connections
    • Snowflake on Azure
      • Structural process overview for Snowflake on Azure
      • Structural differences and limitations with Snowflake on Azure
      • Before you create a Snowflake on Azure workspace
      • Configuring Snowflake on Azure workspace data connections
    • Spark SDK
      • Structural process overview for the Spark SDK
      • Structural differences and limitations with the Spark SDK
      • Configuring Spark SDK workspace data connections
      • Using Spark to run de-identification of the data
    • SQL Server
      • System requirements for SQL Server
      • Before you create a SQL Server workspace
      • Configuring SQL Server workspace data connections
    • Yugabyte
      • System requirements for Yugabyte
      • Structural differences and limitations with Yugabyte
      • Before you create a Yugabyte workspace
      • Configuring Yugabyte workspace data connections
      • Troubleshooting Yugabyte data generation issues
  • Using the Structural API
    • About the Structural API
    • Getting an API token
    • Getting the workspace ID
    • Using the Structural API to perform tasks
      • Configure environment settings
      • Manage generator presets
        • Retrieving the list of generator presets
        • Structure of a generator preset
        • Creating a custom generator preset
        • Updating an existing generator preset
        • Deleting a generator preset
      • Manage custom sensitivity rules
      • Create a workspace
      • Connect to source and destination data
      • Manage file groups in a file connector workspace
      • Assign table modes and filters to source database tables
      • Set column sensitivity
      • Assign generators to columns
        • Getting the generator IDs and available metadata
        • Updating generator configurations
        • Structure of a generator assignment
        • Generator API reference
          • Address (AddressGenerator)
          • Algebraic (AlgebraicGenerator)
          • Alphanumeric String Key (AlphaNumericPkGenerator)
          • Array Character Scramble (ArrayTextMaskGenerator)
          • Array JSON Mask (ArrayJsonMaskGenerator)
          • Array Regex Mask (ArrayRegexMaskGenerator)
          • ASCII Key (AsciiPkGenerator)
          • Business Name (BusinessNameGenerator)
          • Categorical (CategoricalGenerator)
          • Character Scramble (TextMaskGenerator)
          • Character Substitution (StringMaskGenerator)
          • Company Name (CompanyNameGenerator)
          • Conditional (ConditionalGenerator)
          • Constant (ConstantGenerator)
          • Continuous (GaussianGenerator)
          • Cross Table Sum (CrossTableAggregateGenerator)
          • CSV Mask (CsvMaskGenerator)
          • Custom Categorical (CustomCategoricalGenerator)
          • Date Truncation (DateTruncationGenerator)
          • Email (EmailGenerator)
          • Event Timestamps (EventGenerator)
          • File Name (FileNameGenerator)
          • Find and Replace (FindAndReplaceGenerator)
          • FNR (FnrGenerator)
          • Geo (GeoGenerator)
          • HIPAA Address (HipaaAddressGenerator)
          • Hostname (HostnameGenerator)
          • HStore Mask (HStoreMaskGenerator)
          • HTML Mask (HtmlMaskGenerator)
          • Integer Key (IntegerPkGenerator)
          • International Address (InternationalAddressGenerator)
          • IP Address (IPAddressGenerator)
          • JSON Mask (JsonMaskGenerator)
          • MAC Address (MACAddressGenerator)
          • Mongo ObjectId Key (ObjectIdPkGenerator)
          • Name (NameGenerator)
          • Noise Generator (NoiseGenerator)
          • Null (NullGenerator)
          • Numeric String Key (NumericStringPkGenerator)
          • Passthrough (PassthroughGenerator)
          • Phone (USPhoneNumberGenerator)
          • Random Boolean (RandomBooleanGenerator)
          • Random Double (RandomDoubleGenerator)
          • Random Hash (RandomStringGenerator)
          • Random Integer (RandomIntegerGenerator)
          • Random Timestamp (RandomTimestampGenerator)
          • Random UUID (UUIDGenerator)
          • Regex Mask (RegexMaskGenerator)
          • Sequential Integer (UniqueIntegerGenerator)
          • Shipping Container (ShippingContainerGenerator)
          • SIN (SINGenerator)
          • SSN (SsnGenerator)
          • Struct Mask (StructMaskGenerator)
          • Timestamp Shift (TimestampShiftGenerator)
          • Unique Email (UniqueEmailGenerator)
          • URL (UrlGenerator)
          • UUID Key (UuidPkGenerator)
          • XML Mask (XmlMaskGenerator)
      • Configure subsetting
      • Check for and resolve schema changes
      • Run data generation jobs
      • Schedule data generation jobs
    • Example script: Starting a data generation job
    • Example script: Polling for a job status and creating a Docker package
Powered by GitBook
On this page
  • Viewing the list of generated container artifacts
  • Information in the list
  • Viewing details for an artifact
  • Obtaining container artifacts
  • Copying the volume digest
  • Obtaining the data volume from the registry
  • Downloading and updating the Docker Compose file

Was this helpful?

Export as PDF
  1. Running data generation

Viewing and downloading container artifacts

For a workspace that writes the destination data to container artifacts, the Jobs view displays a list of the generated data volumes.

For each data volume, it also provides access to

  • The digest you use to download the data volume from the registry.

  • A Docker Compose file template to help you to stand up a database with a volume mount that uses the generated data volume.

Viewing the list of generated container artifacts

When the workspace is configured to write the destination data to a container repository, the Jobs view provides access to the generated data volumes.

The Jobs view for the workspace is then divided into the following tabs:

  • The Jobs tab contains the list of jobs.

  • The Container Artifacts tab lists the data volumes that were created by data generation jobs.

On the Container Artifacts tab, each entry represents a data volume created by a data generation job. The volumes that were generated most recently are at the top of the list.

Information in the list

For each volume, the list contains:

  • The image that the volume was based on.

  • The assigned tags.

  • The identifier of the job.

  • When the artifact was created.

  • The user who ran the job that created the artifact.

Viewing details for an artifact

To view the details about a data volume, click the details icon. The details panel contains:

  • The job identifier.

  • The assigned tags.

  • When the volume was created.

  • Who created the volume.

  • The full registry and reference path to the volume.

From the artifact details panel, you can:

  • Copy the job identifier.

  • Display the job details view.

  • Download the Compose file for the volume.

  • Copy the digest for the volume. You use the digest to download the data volume from the registry.

Obtaining container artifacts

For each data volume, you use the digest to retrieve the data volume from the registry. The Docker Compose file provides authentication information for the data on the data volume.

Copying the volume digest

To copy the volume digest for a generated data volume:

  1. On the Container Artifacts tab, click the details icon for the data volume.

  2. On the details panel, click the copy digest button.

Obtaining the data volume from the registry

Use the volume digest to pull the data volume from the registry.

The data volume downloads as a .tar.gz file.

Extract the downloaded file to your local machine.

Here is a basic example of downloading and extracting the volume:

# Pull by tag
oras pull <registry>/<repository>:<tag>

# Pull by digest
oras pull <registry>/<repository>@<digest>

# Extract the data volume
# When you extract the tar, preserve the permissions and owners
# Note: --same-owner is specific to GNU TAR
tar --same-owner -xvf datavol.tar.gz

Downloading and updating the Docker Compose file

The Docker Compose file helps to generate a database from the data volume. It includes the database user password. The username is the default user for the database platform:

  • For PostgreSQL, postgres

  • For MySQL, root

  • For SQL Server, sa

Downloading the file

You can download the Docker Compose file for a job from the jobs list, the job details view, or the Container Artifacts list.

From the job list:

  1. Click the download icon in the far right column.

  2. Select Volume Compose File.

From the job details view, under Generated Artifacts, click Compose File.

From the Container Artifacts list:

  1. Click the details icon for the data volume.

  2. On the details panel, click the download icon.

Updating the file with the volume path

In the volumes section of the Compose file, replace the template path value with the path to the extracted data volume.

Last updated 2 days ago

Was this helpful?

Because this is a data volume and not an image, you must use a tool such as the .

ORAS CLI