LogoLogo
Release notesAPI docsDocs homeStructural CloudTonic.ai
  • Tonic Structural User Guide
  • About Tonic Structural
    • Structural data generation workflow
    • Structural deployment types
    • Structural implementation roles
    • Structural license plans
  • Logging into Structural for the first time
  • Getting started with the Structural free trial
  • Managing your user account
  • Frequently Asked Questions
  • Tutorial videos
  • Creating and managing workspaces
    • Managing workspaces
      • Viewing your list of workspaces
      • Creating, editing, or deleting a workspace
      • Workspace configuration settings
        • Workspace identification and connection type
        • Data connection settings
        • Configuring secrets managers for database connections
        • Data generation settings
        • Enabling and configuring upsert
        • Writing output to Tonic Ephemeral
        • Writing output to a container repository
        • Advanced workspace overrides
      • About the workspace management view
      • About workspace inheritance
      • Assigning tags to a workspace
      • Exporting and importing the workspace configuration
    • Managing access to workspaces
      • Sharing workspace access
      • Transferring ownership of a workspace
    • Viewing workspace jobs and job details
  • Configuring data generation
    • Privacy Hub
    • Database View
      • Viewing and configuring tables
      • Viewing the column list
      • Displaying sample data for a column
      • Configuring an individual column
      • Configuring multiple columns
      • Identifying similar columns
      • Commenting on columns
    • Table View
    • Working with document-based data
      • Performing scans on collections
      • Using Collection View
    • Identifying sensitive data
      • Running the Structural sensitivity scan
      • Manually indicating whether a column is sensitive
      • Built-in sensitivity types that Structural detects
      • Creating and managing custom sensitivity rules
    • Table modes
    • Generator information
      • Generator summary
      • Generator reference
        • Address
        • Algebraic
        • Alphanumeric String Key
        • Array Character Scramble
        • Array JSON Mask
        • Array Regex Mask
        • ASCII Key
        • Business Name
        • Categorical
        • Character Scramble
        • Character Substitution
        • Company Name
        • Conditional
        • Constant
        • Continuous
        • Cross Table Sum
        • CSV Mask
        • Custom Categorical
        • Date Truncation
        • Email
        • Event Timestamps
        • File Name
        • Find and Replace
        • FNR
        • Geo
        • HIPAA Address
        • Hostname
        • HStore Mask
        • HTML Mask
        • Integer Key
        • International Address
        • IP Address
        • JSON Mask
        • MAC Address
        • Mongo ObjectId Key
        • Name
        • Noise Generator
        • Null
        • Numeric String Key
        • Passthrough
        • Phone
        • Random Boolean
        • Random Double
        • Random Hash
        • Random Integer
        • Random Timestamp
        • Random UUID
        • Regex Mask
        • Sequential Integer
        • Shipping Container
        • SIN
        • SSN
        • Struct Mask
        • Timestamp Shift Generator
        • Unique Email
        • URL
        • UUID Key
        • XML Mask
      • Generator characteristics
        • Enabling consistency
        • Linking generators
        • Differential privacy
        • Partitioning a column
        • Data-free generators
        • Supporting uniqueness constraints
        • Format-preserving encryption (FPE)
      • Generator types
        • Composite generators
        • Primary key generators
    • Generator assignment and configuration
      • Reviewing and applying recommended generators
      • Assigning and configuring generators
      • Document View for file connector JSON columns
      • Generator hints and tips
      • Managing generator presets
      • Configuring and using Structural data encryption
      • Custom value processors
    • Subsetting data
      • About subsetting
      • Using table filtering for data warehouses and Spark-based data connectors
      • Viewing the current subsetting configuration
      • Subsetting and foreign keys
      • Configuring subsetting
      • Viewing and managing configuration inheritance
      • Viewing the subset creation steps
      • Viewing previous subsetting data generation runs
      • Generating cohesive subset data from related databases
      • Other subsetting hints and tips
    • Viewing and adding foreign keys
    • Viewing and resolving schema changes
    • Tracking changes to workspaces, generator presets, and sensitivity rules
    • Using the Privacy Report to verify data protection
  • Running data generation
    • Running data generation jobs
      • Types of data generation
      • Data generation process
      • Running data generation manually
      • Scheduling data generation
      • Issues that prevent data generation
    • Managing data generation performance
    • Viewing and downloading container artifacts
    • Post-job scripts
    • Webhooks
  • Installing and Administering Structural
    • Structural architecture
    • Using Structural securely
    • Deploying a self-hosted Structural instance
      • Deployment checklist
      • System requirements
      • Deploying with Docker Compose
      • Deploying on Kubernetes with Helm
      • Enabling the option to write output data to a container repository
        • Setting up a Kubernetes cluster to use to write output data to a container repository
        • Required access to write destination data to a container repository
      • Entering and updating your license key
      • Setting up host integration
      • Working with the application database
      • Setting up a secret
      • Setting a custom certificate
    • Using Structural Cloud
      • Structural Cloud notes
      • Setting up and managing a Structural Cloud pay-as-you-go subscription
      • Structural Cloud onboarding
    • Managing user access to Structural
      • Structural organizations
      • Determining whether users can create accounts
      • Creating a new account in an existing organization
      • Single sign-on (SSO)
        • Structural user authentication with SSO
        • Enabling and configuring SSO on Structural Cloud
        • Synchronizing SSO groups with Structural
        • Viewing the list of SSO groups in Tonic Structural
        • AWS IAM Identity Center
        • Duo
        • GitHub
        • Google
        • Keycloak
        • Microsoft Entra ID (previously Azure Active Directory)
        • Okta
        • OpenID Connect (OIDC)
        • SAML
      • Managing Structural users
      • Managing permissions
        • About permission sets
        • Built-in permission sets
        • Available permissions
        • Viewing the lists of global and workspace permission sets
        • Configuring custom permission sets
        • Selecting default permission sets
        • Configuring access to global permission sets
        • Setting initial access to all global permissions
        • Granting Account Admin access for a Structural Cloud organization
    • Structural monitoring and logging
      • Monitoring Structural services
      • Performing health checks
      • Downloading the usage report
      • Tracking user access and permissions
      • Redacted and diagnostic (unredacted) logs
      • Data that Tonic.ai collects
      • Verifying and enabling telemetry sharing
    • Configuring environment settings
    • Updating Structural
  • Connecting to your data
    • About data connectors
    • Overview for database administrators
    • Data connector summary
    • Amazon DynamoDB
      • System requirements and limitations for DynamoDB
      • Structural differences and limitations with DynamoDB
      • Before you create a DynamoDB workspace
      • Configuring DynamoDB workspace data connections
    • Amazon EMR
      • Structural process overview for Amazon EMR
      • System requirements for Amazon EMR
      • Structural differences and limitations with Amazon EMR
      • Before you create an Amazon EMR workspace
        • Creating IAM roles for Structural and Amazon EMR
        • Creating Athena workgroups
        • Configuration for cross-account setups
      • Configuring Amazon EMR workspace data connections
    • Amazon Redshift
      • Structural process overview for Amazon Redshift
      • Structural differences and limitations with Amazon Redshift
      • Before you create an Amazon Redshift workspace
        • Required AWS instance profile permissions for Amazon Redshift
        • Setting up the AWS Lambda role for Amazon Redshift
        • AWS KMS permissions for Amazon SQS message encryption
        • Amazon Redshift-specific Structural environment settings
        • Source and destination database permissions for Amazon Redshift
      • Configuring Amazon Redshift workspace data connections
    • Databricks
      • Structural process overview for Databricks
      • System requirements for Databricks
      • Structural differences and limitations with Databricks
      • Before you create a Databricks workspace
        • Granting access to storage
        • Setting up your Databricks cluster
        • Configuring the destination database schema creation
      • Configuring Databricks workspace data connections
    • Db2 for LUW
      • System requirements for Db2 for LUW
      • Structural differences and limitations with Db2 for LUW
      • Before you create a Db2 for LUW workspace
      • Configuring Db2 for LUW workspace data connections
    • File connector
      • Overview of the file connector process
      • Supported file and content types
      • Structural differences and limitations with the file connector
      • Before you create a file connector workspace
      • Configuring the file connector storage type and output options
      • Managing file groups in a file connector workspace
      • Downloading generated file connector files
    • Google BigQuery
      • Structural differences and limitations with Google BigQuery
      • Before you create a Google BigQuery workspace
      • Configuring Google BigQuery workspace data connections
      • Resolving schema changes for de-identified views
    • MongoDB
      • System requirements for MongoDB
      • Structural differences and limitations with MongoDB
      • Configuring MongoDB workspace data connections
      • Other MongoDB hints and tips
    • MySQL
      • System requirements for MySQL
      • Before you create a MySQL workspace
      • Configuring MySQL workspace data connections
    • Oracle
      • Known limitations for Oracle schema objects
      • System requirements for Oracle
      • Structural differences and limitations with Oracle
      • Before you create an Oracle workspace
      • Configuring Oracle workspace data connections
    • PostgreSQL
      • System requirements for PostgreSQL
      • Before you create a PostgreSQL workspace
      • Configuring PostgreSQL workspace data connections
    • Salesforce
      • System requirements for Salesforce
      • Structural differences and limitations with Salesforce
      • Before you create a Salesforce workspace
      • Configuring Salesforce workspace data connections
    • Snowflake on AWS
      • Structural process overviews for Snowflake on AWS
      • Structural differences and limitations with Snowflake on AWS
      • Before you create a Snowflake on AWS workspace
        • Required AWS instance profile permissions for Snowflake on AWS
        • Other configuration for Lambda processing
        • Source and destination database permissions for Snowflake on AWS
        • Configuring whether Structural creates the Snowflake on AWS destination database schema
      • Configuring Snowflake on AWS workspace data connections
    • Snowflake on Azure
      • Structural process overview for Snowflake on Azure
      • Structural differences and limitations with Snowflake on Azure
      • Before you create a Snowflake on Azure workspace
      • Configuring Snowflake on Azure workspace data connections
    • Spark SDK
      • Structural process overview for the Spark SDK
      • Structural differences and limitations with the Spark SDK
      • Configuring Spark SDK workspace data connections
      • Using Spark to run de-identification of the data
    • SQL Server
      • System requirements for SQL Server
      • Before you create a SQL Server workspace
      • Configuring SQL Server workspace data connections
    • Yugabyte
      • System requirements for Yugabyte
      • Structural differences and limitations with Yugabyte
      • Before you create a Yugabyte workspace
      • Configuring Yugabyte workspace data connections
      • Troubleshooting Yugabyte data generation issues
  • Using the Structural API
    • About the Structural API
    • Getting an API token
    • Getting the workspace ID
    • Using the Structural API to perform tasks
      • Configure environment settings
      • Manage generator presets
        • Retrieving the list of generator presets
        • Structure of a generator preset
        • Creating a custom generator preset
        • Updating an existing generator preset
        • Deleting a generator preset
      • Manage custom sensitivity rules
      • Create a workspace
      • Connect to source and destination data
      • Manage file groups in a file connector workspace
      • Assign table modes and filters to source database tables
      • Set column sensitivity
      • Assign generators to columns
        • Getting the generator IDs and available metadata
        • Updating generator configurations
        • Structure of a generator assignment
        • Generator API reference
          • Address (AddressGenerator)
          • Algebraic (AlgebraicGenerator)
          • Alphanumeric String Key (AlphaNumericPkGenerator)
          • Array Character Scramble (ArrayTextMaskGenerator)
          • Array JSON Mask (ArrayJsonMaskGenerator)
          • Array Regex Mask (ArrayRegexMaskGenerator)
          • ASCII Key (AsciiPkGenerator)
          • Business Name (BusinessNameGenerator)
          • Categorical (CategoricalGenerator)
          • Character Scramble (TextMaskGenerator)
          • Character Substitution (StringMaskGenerator)
          • Company Name (CompanyNameGenerator)
          • Conditional (ConditionalGenerator)
          • Constant (ConstantGenerator)
          • Continuous (GaussianGenerator)
          • Cross Table Sum (CrossTableAggregateGenerator)
          • CSV Mask (CsvMaskGenerator)
          • Custom Categorical (CustomCategoricalGenerator)
          • Date Truncation (DateTruncationGenerator)
          • Email (EmailGenerator)
          • Event Timestamps (EventGenerator)
          • File Name (FileNameGenerator)
          • Find and Replace (FindAndReplaceGenerator)
          • FNR (FnrGenerator)
          • Geo (GeoGenerator)
          • HIPAA Address (HipaaAddressGenerator)
          • Hostname (HostnameGenerator)
          • HStore Mask (HStoreMaskGenerator)
          • HTML Mask (HtmlMaskGenerator)
          • Integer Key (IntegerPkGenerator)
          • International Address (InternationalAddressGenerator)
          • IP Address (IPAddressGenerator)
          • JSON Mask (JsonMaskGenerator)
          • MAC Address (MACAddressGenerator)
          • Mongo ObjectId Key (ObjectIdPkGenerator)
          • Name (NameGenerator)
          • Noise Generator (NoiseGenerator)
          • Null (NullGenerator)
          • Numeric String Key (NumericStringPkGenerator)
          • Passthrough (PassthroughGenerator)
          • Phone (USPhoneNumberGenerator)
          • Random Boolean (RandomBooleanGenerator)
          • Random Double (RandomDoubleGenerator)
          • Random Hash (RandomStringGenerator)
          • Random Integer (RandomIntegerGenerator)
          • Random Timestamp (RandomTimestampGenerator)
          • Random UUID (UUIDGenerator)
          • Regex Mask (RegexMaskGenerator)
          • Sequential Integer (UniqueIntegerGenerator)
          • Shipping Container (ShippingContainerGenerator)
          • SIN (SINGenerator)
          • SSN (SsnGenerator)
          • Struct Mask (StructMaskGenerator)
          • Timestamp Shift (TimestampShiftGenerator)
          • Unique Email (UniqueEmailGenerator)
          • URL (UrlGenerator)
          • UUID Key (UuidPkGenerator)
          • XML Mask (XmlMaskGenerator)
      • Configure subsetting
      • Check for and resolve schema changes
      • Run data generation jobs
      • Schedule data generation jobs
    • Example script: Starting a data generation job
    • Example script: Polling for a job status and creating a Docker package
Powered by GitBook
On this page
  • When you use AWS Databricks with Amazon S3
  • Modifications to the Databricks instructions
  • Alternatives to the instance profile
  • When you use Azure Databricks with ADLSv2

Was this helpful?

Export as PDF
  1. Connecting to your data
  2. Databricks
  3. Before you create a Databricks workspace

Granting access to storage

Last updated 3 months ago

Was this helpful?

On AWS, Tonic Structural reads data from external tables that use Amazon S3 as the storage location. It writes files to S3 buckets.

On Azure, Structural reads data from external tables that use Azure Data Lake Storage Gen2 (ADLSv2). It writes the files to ADLSv2.

The Databricks cluster must be granted appropriate permissions to access the storage locations.

When you use AWS Databricks with Amazon S3

For information on how to configure an instance profile for access to Amazon S3, go to .

This is the recommended method to grant the cluster access to the S3 buckets.

Modifications to the Databricks instructions

Instance profile for separate source and destination S3 buckets

The that Databricks provides assumes that the cluster reads from and writes to the same S3 bucket.

If your source and destination S3 buckets are different, you can use an instance profile similar to the following, which separates the read and write permissions.

Replace <source-bucket> and <destination-bucket> with your S3 bucket names.

{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Sid": "S3SourceRoot",
            "Effect": "Allow",
            "Action": [
                "s3:ListBucket"
            ],
            "Resource": [
                "arn:aws:s3:::<source-bucket>"
            ]
        },
        {
            "Sid": "S3SourceSubdirectories",
            "Effect": "Allow",
            "Action": [
                "s3:GetObject"
            ],
            "Resource": [
                "arn:aws:s3:::<source-bucket>/*"
            ]
        },
        {
            "Sid": "S3DestinationRoot",
            "Effect": "Allow",
            "Action": [
                "s3:ListBucket"
            ],
            "Resource": [
                "arn:aws:s3:::<destination_bucket>"
            ]
        },
        {
            "Sid": "S3DestinationSubdirectories",
            "Effect": "Allow",
            "Action": [
                "s3:PutObject",
                "s3:GetObject",
                "s3:DeleteObject",
                "s3:PutObjectAcl"
            ],
            "Resource": [
                "arn:aws:s3:::<destination-bucket>/*"
            ]
        }
    ]
}

S3 bucket policy for cross-account access

If your S3 buckets are in a separate account, then to allow the cluster access to the S3 buckets, you must create an S3 bucket policy as a cross-account trust relationship.

Similar to the instance profile, if you use separate S3 buckets for the source and destination, you can split the Databricks-provided definitions for the source and destination as shown in the following examples.

Source S3 bucket policy

This policy limits the instance profile to read-only (Get, List) access to the source S3 bucket.

{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Sid": "Example source permissions",
      "Effect": "Allow",
      "Principal": {
        "AWS": "arn:aws:iam::<aws-account-id-databricks>:role/<iam-role-for-s3-access>"
      },
      "Action": [
        "s3:GetBucketLocation",
        "s3:ListBucket"
      ],
      "Resource": "arn:aws:s3:::<source-s3-bucket-name>"
    },
    {
      "Effect": "Allow",
      "Principal": {
        "AWS": "arn:aws:iam::<aws-account-id-databricks>:role/<iam-role-for-s3-access>"
      },
      "Action": [
        "s3:GetObject"
      ],
      "Resource": "arn:aws:s3:::<source-s3-bucket-name>/*"
    }
  ]
}

Destination S3 bucket policy

This policy grants the instance profile both read and write access to the destination S3 bucket.

{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Sid": "Example destination permissions",
      "Effect": "Allow",
      "Principal": {
        "AWS": "arn:aws:iam::<aws-account-id-databricks>:role/<iam-role-for-s3-access>"
      },
      "Action": [
        "s3:GetBucketLocation",
        "s3:ListBucket"
      ],
      "Resource": "arn:aws:s3:::<destination-s3-bucket-name>"
    },
    {
      "Effect": "Allow",
      "Principal": {
        "AWS": "arn:aws:iam::<aws-account-id-databricks>:role/<iam-role-for-s3-access>"
      },
      "Action": [
        "s3:PutObject",
        "s3:GetObject",
        "s3:DeleteObject",
        "s3:PutObjectAcl"
      ],
      "Resource": "arn:aws:s3:::<destination-s3-bucket-name>/*"
    }
  ]
}

Alternatives to the instance profile

If you cannot or do not want to configure an instance profile, you can instead directly grant the cluster access to the S3 bucket.

To do this, you use your AWS Access Key and AWS Secret Access Key to set the following Spark configuration properties and values.

Property/Key
Value

fs.s3n.awsAccessKeyId

<AWS Access Key ID>

spark.fs.s3a.access.key

<AWS Access Key ID>

spark.fs.s3a.secret.key

<AWS Secret Access Key>

fs.s3n.awsSecretAccessKey

<AWS Secret Access Key>

When you use Azure Databricks with ADLSv2

Azure provides several options for accessing ADLSv2 from Databricks.

For some of the methods, you must set various Spark configuration properties. The Azure Databricks documentation provides Python examples that use spark.conf.set(<property>,<value>).

Structural uses the abfss driver.

If your S3 buckets are owned by the same account in which the Databricks cluster is provisioned, you do not need an .

You enter the Spark configuration parameters when you .

For details, go to .

For Structural, you must provide these in the cluster configuration. Several of the methods recommend the use of . To reference a secret, follow . You enter the Spark configuration parameters when you .

Configuring S3 access with instance profiles in the Databricks documentation
instance profile definition
S3 bucket policy
Access Azure Data Lake Storage Gen2 and Blob Storage in the Azure Databricks documentation
secrets
these instructions
set up your cluster
set up your cluster